Friday, November 25, 2016

7. Angle sum and difference identities

These are also known as the addition and subtraction theorems or formulae. The identities can be derived by combining right triangles such as in the adjacent diagram, or by considering the invariance of the length of a chord on a unit circle given a particular central angle. Furthermore, it is even possible to derive the identities using Euler's identity although this would be a more obscure approach given that complex numbers are used.


For the angle addition diagram for the sine and cosine, the line in bold with the 1 on it is of length 1. It is the hypotenuse of a right angle triangle with angle β which gives the sin β and cos β. The cos β line is the hypotenuse of a right angle triangle with angle α so it has sides sin α and cos α both multiplied by cos β. This is the same for the sin β line. The original line is also the hypotenuse of a right angle triangle with angle α + β, the opposite side is the sin(α + β) line up from the origin and the adjacent side is the cos(α + β) segment going horizontally from the top left.
Overall the diagram can be used to show the sine and cosine of sum identities
because the opposite sides of the rectangle are equal.

Matrix form


The sum and difference formulae for sine and cosine can be written in matrix form as:

This shows that these matrices form a representation of the rotation group in the plane (technically, the special orthogonal group SO(2)), since the composition law is fulfilled: subsequent multiplications of a vector with these two matrices yields the same result as the rotation by the sum of the angles.

Sines and cosines of sums of infinitely many terms



In these two identities an asymmetry appears that is not seen in the case of sums of finitely many terms: in each product, there are only finitely many sine factors and cofinitely many cosine factors.
If only finitely many of the terms θi are nonzero, then only finitely many of the terms on the right side will be nonzero because sine factors will vanish, and in each term, all but finitely many of the cosine factors will be unity.

Tangents of sums

Let ek (for k = 0, 1, 2, 3, ...) be the kth-degree elementary symmetric polynomial in the variables


The number of terms on the right side depends on the number of terms on the left side.
For example:



and so on. The case of only finitely many terms can be proved by mathematical induction.

Secants and cosecants of sums


where ek is the kth-degree elementary symmetric polynomial in the n variables xi = tan θii = 1, ..., n, and the number of terms in the denominator and the number of factors in the product in the numerator depend on the number of terms in the sum on the left. The case of only finitely many terms can be proved by mathematical induction on the number of such terms. The convergence of the series in the denominators can be shown by writing the secant identity in the form
and then observing that the left side converges if the right side converges, and similarly for the cosecant identity.
For example,